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The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in
two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon
hexagonal lattice characterized by a negative coupling parameter � in account of its inverse dispersive behav-
ior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as
three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on
experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support
single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the
intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers
cannot be supported since they are highly unstable.
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I. INTRODUCTION

Significant attention has been paid to highly localized
time-periodic vibrating motion in periodic lattices since
roughly two decades ago. These modes �referring to discrete
breathers �DBs� and earlier to intrinsic localized modes
�ILMs�� owe their existence to lattice discreteness, in relation
to the intrinsic nonlinearity of the medium involved. Follow-
ing some initial phenomenological works in the late 1980’s
�see, e.g., in Refs. �1–5��, a rigorous proof for discrete
breather existence was furnished independently by MacKay
and Aubry �6� �later extended in �7�� using the notion of the
anticontinuous limit and by Flach �8�, who used a homoclinic
orbit approach. Although single-site breathers possess the li-
on’s share in this study, multisite excitations �referred to as
multibreathers� also exist and they are mentioned even since
�6� but they were studied more rigorously in later works.
Some of the results in existence and stability of multibreath-
ers in one-dimensional �1D� Klein-Gordon chains can be
found in Refs. �9–12� �also via the homoclinic orbit approach
�13,14��. For the two-dimensional �2D� hexagonal case that
interests us one can refer to �15� or, for instance, �16–18� for
the DNLS case �also, see the references therein�. Various
studies have therefore been dedicated to different aspects in-
volved in the spontaneous formation, mobility, and interac-
tion of DBs, both theoretically and experimentally; see, e.g.,
in Refs. �19–24� for a review.

On a separate physical playground, large ensembles of
charged particles �plasmas� contaminated by massive heavily
charged dust defects �dusty plasmas �DPs� or complex plas-
mas� �25–28� host a wealth of linear and nonlinear collective
effects, which are readily observed in laboratory and space
observations. Of particular importance is the occurrence of
strongly coupled DP crystalline configurations, typically
formed and sustained in the sheath region above a horizontal
negatively biased electrode in gas discharge �plasma�

experiments �25,28�. These DP lattices are encountered in
various configurations, including most commonly a superpo-
sition of levitated hexagonal 2D layers �28�. 1D configura-
tions have also been created in the laboratory by making use
of appropriate confining potentials �29�. Ultra-low-frequency
modes �eigenfrequencies of only a few dozens of Hz� have
been predicted and later experimentally established in the
longitudinal �in-plane acoustic mode�, horizontal transverse
�in plane�, and vertical transverse �off-plane� directions
�25–28�. The linear analysis of the latter �transverse off
plane� degree of freedom has revealed the existence of a
backward-wave character, as was theoretically predicted
�30,31� and later experimentally confirmed �29�. Beyond 1D
“toy-lattice” phenomenology, studies of the same off-plane
“bending mode” have been carried out recently 2D DP crys-
tals, establishing the inverse dispersive character of trans-
verse dust-lattice waves �32,33�; those findings have success-
fully interpreted earlier numerical �molecular-dynamics� �34�
and experimental �35� results. It may be pointed out, for
rigor, that the 2D picture bears substantially modified disper-
sion and group-velocity characteristics, compared to the 1D
case, as discussed extensively in the latter references. The
nonlinear modulation of continuum �as opposed to discrete,
considered here� dust-lattice excitations in hexagonal crys-
tals has been considered for the transverse mode in Ref. �33�
and for horizontal �in-plane� motion in Ref. �36�.

Here, we aim at focusing on the nonlinear aspects of the
transverse �vertical� dust-lattice �TDL� mode, assuming the
other 2 degrees of freedom to remain “frozen” throughout
this work. The necessary ingredients for discrete excitations
to occur, namely, nonlinearity and lattice discreteness, are
present in the transverse dust-lattice mode par excellence.
The sheath environment provides an on-site �substrate� effec-
tive potential �viz., the force is F=−�� /�z� that may �for
low density/pressure� be strongly anharmonic near equilib-
rium of the generic form
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The linear TDL eigenfrequency �0 �in Eq. �1�� is typically as
low as �20 Hz �30,31,37�. The anharmonicity coefficients �
and � may be determined experimentally �38–40�. Sources
of nonlinearity may include the electrostatic coupling anhar-
monicity �37,41–43� and the coupling among different
modes �either due to the interaction law �44� or as a purely
geometric effect �43��. The anharmonicity �nonparabolic
form� and the asymmetry �as in fact manifested by a strong
cubic term� of the sheath potential form in Eq. �1� above is,
as a matter of fact, associated with dust-grain charging and
with the sheath collisionality, as theoretically shown from
first principles in Refs. �45� �note Fig. 8 therein� and �46�
�note Fig. 6 therein�. Lattice discreteness, on the other hand,
is manifested via the weak-interaction potential energy
among neighboring grains, as compared to the energy
“stored” in an isolated �single-site� vibration. The former is
measured by the characteristic coupling frequency

�T,0 = � Q2

M�D
3 �1/2�1 + �

�3 �1/2

e−�/2 �2�

�for Debye interactions�, where �=a /�D is the lattice param-
eter �roughly of the order of unity�, Q is the electric charge
of the dust grain, and �D is the Debye length, measuring the
strength of Debye charge screening �30,31,37�. The latter
�single-grain vibration energy� is measured by the linear
transverse dust-lattice vibration eigenfrequency �0 in Eq.
�1�. Lattice discreteness is measured via the ratio

� = �T,0
2 /�0

2, �3�

which acquires very small values, as suggested by experi-
ments with 2D �40� and earlier 1D �29,47� crystals. Dust
lattices are therefore highly discrete systems, whose dynam-
ics is located near the anticontinuous �uncoupled sites� limit
�since �	1�. All of these aspects can be inferred from earlier
experimental studies �29,47� although attention has not fo-
cused upon these aspects therein.

We have earlier suggested �48� that the vertical on-site
potential anharmonicity, in combination with the high dis-
creteness of dust crystals, may enhance energy localization
via the formation of discrete breather excitations. The occur-
rence of DBs in 1D dust crystals was investigated from first
principles in Ref. �49�. Our aim here is to extend those ear-
lier results by elucidating the discrete dynamics of the trans-
verse dust-lattice mode in 2D hexagonal crystals. A negative-
valued “spring constant” is assumed where appropriate, in
account of the inverse dispersion inherent in TDL vibrations.
Our results are tested for values from real plasma discharge
experiments. The analytical and numerical toolboxes we
used are described in full detail in earlier Refs. �10,12,50�
and are therefore only briefly summarized here.

A number of comments are in row, to clarify our motiva-
tion and methodology. The scope of this paper is twofold. On
one hand, we aim at presenting a generic investigation of the
occurrence and stability of discrete lattice modes in hexago-

nal crystals from first principles. On the other hand, the oc-
currence of discrete breather excitations associated with
transverse dust-lattice vibrations will be established through
our work and lies in its very motivation. This double-sided
scope is reflected in the structure of the text, which first
adopts a generic hexagonal lattice formulation and then fo-
cuses closer on dust lattices. For the sake of reference and
rigor, regarding the former component �generic hexagonal
lattice dynamics�, we may cite a number of existing studies
of hexagonal lattice configurations. Those earlier works have
nevertheless focused on coupling �interaction� nonlinearity
�e.g., via the Fermi-Pasta-Ulam paradigm, in fact disregard-
ing on-site potential nonlinearity, a basic element in our case�
�51,52� or have employed the discrete nonlinear Schrödinger
�DNLS� generic approach �16–18�. Of particular interest is
the study of localized structures in hexagonal photonic lat-
tices, e.g., �53–55�. The nonlinear Klein-Gordon approach
that we adopt here was considered in Ref. �15�, upon which
we have relied in our methodology. Nevertheless, we here
generalize by considering the occurrence of breathers in sys-
tems wherein linear modes obey an inverse dispersion law;
for this purpose, we have adopted a formulation which
leaves the sign of the coupling coefficient arbitrary �i.e., ei-
ther positive or negative; read below�. As regards the latter
component we focus on �dusty plasma crystal transverse vi-
brations�, earlier works �33,36� have adopted a continuum
approximation, whose validity may be questioned in certain
real experimental situations involving highly discrete DP
crystal configurations.

The layout of the paper proceeds as follows. Section II is
devoted to the analytical formulation of a general model for
hexagonal lattice dynamics. The existence and stability of
discrete breather-type excitations in such a lattice is investi-
gated in Sec. III from a general point of view. Section IV is
devoted to the analytical modeling of hexagonal dusty
plasma crystals, in particular, while the generic results of
Sec. III are then explicitly applied to dusty plasma crystals in
Sec. V. Our results are finally summarized in the concluding
section.

II. HAMILTONIAN DESCRIPTION OF A
HEXAGONAL LATTICE

Consider a hexagonal lattice like the one shown in Fig. 1.
Each site consists of a one-degree-of-freedom Hamiltonian

FIG. 1. The hexagonal lattice configuration is depicted, mounted
with the site numbering employed in our model. The encircled os-
cillator is the central one.
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oscillator with coupled with its six nearest neighbors through
a coupling constant �.

The Hamiltonian of the full system is

H = H0 + �H1

= �
i,j=−



 	 pij
2

2
+ V�xij�
 +

1

2

�

2 �
i,j=−





��xij − xi−1,j�2

+ �xij − xi−1,j+1�2 + �xij − xi,j−1�2 + �xij − xi,j+1�2

+ �xij − xi+1,j−1�2 + �xij − xi+1,j�2� , �4�

where the i , j indices denote the position of the oscillator in
the lattice plane as it is shown in Fig. 1. The variable xij
denotes the displacement of the particle located at site �i , j�
in the direction vertical to the lattice plane and pij is the
corresponding momentum. A factor 1/2 is introduced in Eq.
�4� in order for each site pair entering the summation to be
considered only once. Here it is assumed that the nonlinear
on-site potential V of the oscillator possesses a stable equi-
librium at �x , p�= �0,0�, with V��0�=�p

2 �0.

III. EXISTENCE AND STABILITY OF DISCRETE
BREATHERS IN A HEXAGONAL LATTICE

A. Existence and stability of single-site breathers

The existence of single-site breathers can be investigated
using the notion of the anticontinuous limit introduced in �6�.
This is constructed by taking �→0, i.e., by considering a
chain of uncoupled oscillators. In this limit we consider one
of the lattice oscillators, which we call “central,” moving in
a periodic orbit of period Tb while the rest of them lying at
rest at �x ,y�= �0,0�. This state defines a trivially spatially
localized and time periodic motion which is continued, for
��� small enough, to provide a single-site breather of period
Tb if its period does not resonate with the phonon period, i.e.,
Tb�mTp=2� /�p , ∀m�N �e.g., �6��. The profile of a
sample single-site DB can be seen in Fig. 2.

The linear stability of a breather is determined by the
eigenvalues of the Floquet matrix �i �also called the Floquet
multipliers� of the corresponding periodic orbit, see, e.g.,
�19,57�. If all these multipliers lie on the unit circle of the
complex plane then the periodic orbit is linearly stable, while
if a multiplier lies outside the circle the orbit is unstable.
Note that for every eigenvalue we also have its reciprocal
and their complex conjugate�s� because of the Hamiltonian
structure of the system �i.e., for every �i, there are also �i

−1,
�i

�, and �i
�−1�. So, we cannot have just one eigenvalue outside

the unit circle but only an even number of them. For �=0,
the above-mentioned multipliers lie in two complex conju-
gate bundles at e
i�pTb, except of a pair of multipliers which
lie at unity because of the phase degeneracy of the system.
When the coupling switches on, for ����0	1, the breather
is formed. Correspondingly, the multipliers of the noncentral
oscillators move along the unit circle, without leaving it,
because they are of the same Krein kind �58�, thus forming
the phonon band, while the pair which lies at unity remains
intact. We keep increasing the value of ��� and the phonon
band becomes wider. The DB, with the fixed period Tb, still
exist and remains stable �changing thought its spatial profile�
until the edge of the phonon band reaches +1.

Our purpose is to investigate if, for the �experimentally�
given potentials, the DB can exist for the values of � also
provided by experiments.

B. Existence of three-site breathers

We shall now consider the anticontinuous limit, where for
�→0 we consider three central oscillators �marked by circles
in Fig. 3�. These oscillators are moving in periodic orbits
with the same period Tb=2� /� but in arbitrary phases, while
the rest lie at rest. As it is proven �15�, this state is continued
for ��0 and ���	1 if specific conditions for the phase dif-
ference between the central oscillators hold in the anticon-
tinuous limit. The basic points of the procedure which is
fully described in �15� are shown below.

Due to the phase degeneracy of the system, only the phase
difference between the three central oscillators is significant
in order to determine the specific periodic orbit for �=0,
which will be continued for ��0 to provide the three-site
breather. This way, a natural canonical transformation to the
central oscillators is induced;

� = w1, A = J1 + J2 + J3

�1 = w2 − w1, I1 = J2 + J3,

�2 = w3 − w2, I2 = J3, �5�

(b)(a)

FIG. 2. �Color online� A single-site breather for ���=0.035. For a
better representation, please refer to the video files provided in �56�.

FIG. 3. The hexagonal lattice, where the three central oscillators
are shown.
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where we have defined the action-angle variables w ,J. Note
that �i denote the phase difference and since �3=w1−w3
=−��1+�2�, there are only two independent �is, namely, �1
and �2. Using these variables and adopting the notation of
Ref. �10�, the condition for existence of three-site breathers
becomes

��H1

��i

= 0, � �2�H1

��i� j

� � 0, �6�

where

�H1
 =
1

T
� H1dt �7�

is the average value of H1 along the unperturbed periodic
orbit. It is assumed that two conditions hold, namely: �a�
nonresonance of the breather frequency with the phonon fre-
quency Tb�mTp=m 2�

�p
and �b� anharmonicity of single-site

motion, viz., �� /�J�0.
The motion of a single uncoupled oscillator of the lattice

in the neighborhood of its stable equilibrium point can be
described by a cosine Fourier series in the form

xi�t� = �
n=0




An�Ji�cos nwi = �
n=0




An�Ji�cos�n��it + �i�� . �8�

Since we consider the central oscillators to move with the
same frequency �b, the corresponding actions will have the
same pertinent value Ji=J and so will have the Fourier co-
efficients An�Ji�=An�J�=An. Using Eq. �8�, �H1
 becomes

�H1
 = −
1

2�
n=1




An
2�cos�n�1� + cos�n�2� + cos�n��1 + �2��� ,

and condition �6� becomes

��H1

��i

=
1

2�
n=1




nAn
2�sin�n�i� + sin�n��1 + �2��� = 0.

This is satisfied for all choices of harmonic content if ∀n
�N,

sin�n�i� + sin�n��1 + �2�� = 0, i = 1,2.

At least three physically distinct solutions exist. The first
one, with

�1,2 = 0, �9�

corresponds to concerted motion of all three sites oscillating
in phase, i.e., an in-phase three-site breather. The second,
with

�1,2 = � , �10�

corresponds to an out-of-phase three-site breather. The final
one, with

�1,2 =
2�

3
, �11�

describes periodic motion of all three sites in a vortex like
ring, to be henceforth referred to as a vortex breather.

The spatial profile of these three configurations can be
found in Figs. 4–6.

C. Stability of three-site breathers

As regards three-site breathers, for �=0 there are the two
bundles of Floquet multipliers at e
i�pTb, which correspond
to the non central oscillators, and in addition there are six
Floquet multipliers at unity, a pair for each of the central
oscillators. As it is already mentioned in the case of single-
site breathers, for ����0 the multipliers of the noncentral
oscillators spread along the unit circle, forming thus the pho-
non band. On the other hand, one pair of the multipliers that
correspond to the central oscillators will always remain to
unity, while the other two can move either along the unit
circle or outside of it. If either one or both of these multiplier
pairs leave the circle, the corresponding breather is unstable.
On the other hand, if they both leave unity along the unit
circle, the corresponding breather is linearly stable for values
of ��� small enough. For increasing values of ��� the breather
remains linearly stable until the multipliers of the central
oscillators reach the phonon band. Then, since these multi-
pliers are of different Krein kind, the breather is destabilized
through a Hamiltonian Hopf bifurcation and a complex qua-
druple of multipliers is generated outside the unit circle.

The Floquet multipliers of the central oscillators are given
by �i=e�iT, where �i are the characteristic exponents of the
periodic orbit that correspond to the DB and correspond to
eigenvalues of the stability matrix E which in leading order
of approximation is given by �15�

(b)(a)

FIG. 4. �Color online� An in-phase three-site breather for ���
=0.015. For a better representation please refer to the video files
provided in �56�.

(b)(a)

FIG. 5. �Color online� An out-of-phase three-site breather for
�=0.005. For a better representation, please refer to the video files
provided in �56�.
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�
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2 + �

�2�H1

�I2

2 �
�2�H1

�I2 � �1

�
�2�H1

�I2 � �2

� . �12�

If all the eigenvalues of matrix �12� lie on the imaginary
axis, then the corresponding multipliers lie on the unit circle.
If, in addition, these eigenvalues are simple to first order in �
�or have definite “signature,” to be explained later� then for
small enough � the discrete breather is linearly stable. On the
other hand, if any of the eigenvalue pairs of E is real then the
corresponding DB is unstable.

The various components of the stability matrix E are cal-
culated as

�2�H1

��i � � j

= � f��� + f�2�� j = i

f�2�� j � i ,
� �13�

with

f��� =
1

2�
n=1




n2An
2 cos�n�� �14�

and

�2H0

�Ii � Ij
= �2

�2H0

�J2 = 2
d�

dJ
, j = i

−
�2H0

�J2 = −
d�

dJ
, j = i + 1.� �15�

The eigenvalues of E, i.e., the characteristic exponents of the
DB, are to leading order of approximation,

�1,2 = 
�− �
d�

dJ
�2f�2�� + f���� + O��� ,

�3,4 = 
�− 3�
d�

dJ
f��� + O��� . �16�

We shall now investigate the behavior of these exponents
for the 3 different modes introduced in the previous subsec-
tion. In doing so, we have to stress the significance of the
product P=�

d�
dJ �cf. the expressions above�, which essen-

tially determines the breather stability. We have chosen to
keep the sign of the coupling strength � arbitrary, bearing in
mind that inverse dispersive systems, such as transverse
dust-lattice vibrations �to be discussed below�, require for
negative values of � to be considered in opposition to the
usual Klein-Gordon configuration that is used, for example,
for simulating the behavior of molecular crystals.

1. Stability of in-phase breathers

The characteristic exponents for the first class of time-
reversible solutions with �1=�2=0 are to leading order of
approximation

�1,2,3,4 = 
�− 3�
d�

dJ
f�0� + O��� . �17�

Since

(a)

(e)

(b) (c) (d)

(f) (g) (h)

FIG. 6. �Color online� A vortex breather for �=0.008. For a better representation, please refer to the video files provided in �56�.
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f�0� =
1

2�
n=1




n2An
2 � 0,

the sign of the product P=�
d�
dJ of the coupling strength with

the anharmonicity determines the linear stability of the
breather. If P�0 the specific solution is unstable since all
eigenvalues �i are real. On the other hand, for P�0, the
leading-order calculation suggests linear stability �imaginary
�i�. Because of the double multiplicity of �i one could have
expected that a splitting of the eigenvalues is possible, form-
ing this way a complex quadruple which leads to instability.
This, however, cannot happen due to symplectic signature
reasons �the corresponding quadratic form is definite�. This
issue is thoroughly investigated in Refs. �15,59�.

Note that, the above stability results, as well as the ones
that follow, apply both for ��0 �which corresponds to a
classical nonlinear Klein-Gordon lattice� and for ��0
�which corresponds to dusty plasma crystals�.

2. Stability of out-of-phase breathers

For the second class of solutions, corresponding to �i
=�, the eigenvalues of the stability matrix E are

�1,2 = 
�− �
d�

dJ
�2f�0� + f���� + O��� ,

�3,4 = 
�− 3�
d�

dJ
f��� + O��� . �18�

Although the sign of the quantity

f��� =
1

2�
n=1




�− 1�nn2An
2

is not prescribed in general, one concludes from the above
that

2f�0� + f��� � 0. �19�

Therefore, in order to have both pairs of eigenvalues lying on
the imaginary axis, i.e., for this class of solutions to be lin-
early stable, we shall require both conditions f����0 and
P=�

d�
dJ �0 to be satisfied.

Note that, in most cases we have f����0, since the first
term—which is usually dominant—is a negative term. There-
fore, considering the exponential decay of Fourier coeffi-
cients of smooth functions, the rest of the terms usually do
not change the negative sign of the sum. If this fact holds it
means that the quantities f��� and 2f�0�− f��� will have op-
posite signs, so one of the �i pairs will be real, which leads
to instability.

3. Stability of vortex breathers

The eigenvalues of the matrix E for the vortex configura-
tion are

�1,2,3,4 = 
�− 3�
d�

dJ
f1 + O��� , �20�

with

f1 = f�2�

3
� = f�4�

3
� = �

n=1




�− 1�nn2An
2 cos�n�

3
� . �21�

Using the same arguments as in the previous case, usually
f1�0. Then, if P�0 the corresponding vortex breather is
unstable, while if P�0 the breather is linearly stable.

IV. MODEL FOR HEXAGONAL DUSTY PLASMA
CRYSTALS

Dusty plasma crystals form various configurations, the
most common of which is a two-dimensional hexagonal lat-
tice �28� �see Fig. 7�. The typical intersite spacing is of the
order of �or slightly above� unity �in units of Debye length
�D�. Nearest-neighbor interactions are therefore assumed in
modeling dust crystals.

The vertical displacement znm of the charged grain at site
�i , j� in a DP crystal obeys an equation of motion in the form

d2zij

dt2 =
1

M
�Fe − Mg� + Fint,z − �

dzij

dt
. �22�

We distinguish three contributions in the right-hand side
�rhs� to be specified below.

The first term corresponds to the overall vertical force
acting on a single grain �in the absence of coupling and
damping�; it consists of an upward force Fe due to the elec-
tric field of the plasma sheath and of the force of gravity,
Mg, pointing downwards. At the levitated equilibrium posi-
tion of the crystal, at height z0, the two forces balance each
other, viz., Fe�z0�−Mg=0. �We may set z0 with no loss of
generality, in the following.� Expanding the �variable� charge
and electric field as q�z��q0+q0�z+ 1

2q0��z�z2+¯ and E�z�

TABLE I. Potential form coefficients occurring in laboratory
experiments �40�.

a b �

Set I 0.01 −0.04 −0.034

Set II 0.01 −0.06 −0.065

Set III −0.21 −0.02 −0.17

FIG. 7. A snapshot of the DP crystal by a charge coupled device
�CCD� camera. Courtesy of Dmitry Samsonov �University of Liv-
erpool, UK�.
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�E0+E0�z+ 1
2E0��z�z2+¯ �the prime denotes differentiation

with respect to z, while the index “0” denotes evaluation at
the equilibrium position�, the overall vertical force reads as

Fe�z� − Mg

� �q0E0� + q0�E0�z +
1

2
�q0E0� + 2q0�E0� + q0�E0�z2 + ¯

� − M�0
2�z + ãz2 + b̃z3 + ¯�

= −
�V�z�

�z
, �23�

where the definition of all quantities is obvious. The trans-
verse vibration eigenfrequency may be provided by a simple
Bohm sheath theory �30,31�. The anharmonic character of
the vertical on-site sheath potential V�z�, which clearly ap-
pears in ab initio calculations for low density and low pres-
sure �60� and also in experiments �38,39�, is measured by the
coefficients a and b, which can be directly inferred experi-
mentally �see Eq. �25� below; cf. Table I�. The tilde was used
in the latter expression to remind that these coefficients here
have dimensions, to be henceforth removed via an appropri-

ate scaling, viz., �̃→r0� and �̃→r0
2�.

The vertical component Fint,z of the total interaction force
Fint �due to the electrostatic coupling to neighboring sites�
consists of the sum of the six nearest-neighbor contributions,

Fint � − � �U

�r
�

r=a
�
l=1

6
�zl

�a2 + �zl
2�1/2

� − � �U

�r
�

r=a
�
l=1

6
�zl

a

� − M�T,0
2 �

l=1

6
�zl

a
, �24�

where �zl=zl−zij �assumed 	a� and the dummy index l runs
over all six nearest neighbor to �i , j� indices in Fig. 1. For
Debye interactions, viz., U�r�=e−r/�D /r, the characteristic
frequency �T,0 is obtained as in Eq. �2�.

The last term in the rhs of Eq. �22� represents energy
dissipation �damping� and involves the collision frequency �.
This term will be neglected since �	�0 applies to number of
real experiments �61�. The effect of damping will be in-
cluded in future work.

It is straightforward to combine the latter two expressions
�Eqs. �23� and �24�� into Eq. �22�. Furthermore, one may
scale space and time by the lattice spacing a and the inverse
eigenfrequency �0

−1 to obtain a reduced �dimensionless�
equation of motion. One thus obtains an equation of motion
in the form Md2zij /dt2=−�H�pij ,zij� /�zij, where the �classi-
cal� Hamiltonian H is precisely given by Eq. �4�, setting xij
=zij, pij =Mdzij /dt, and �p=1 therein. Note however that the
coupling coefficient in Eq. �4� needs to be taken as negative
valued, viz.,�=−�T,0

2 /�0
2. The negative sign of �, here arising

naturally as an outcome of the algebra, was expected from
the inverse dispersive character of vertical dust-lattice vibra-
tions �see the negative slope in the observed dispersion
curve, e.g., in Fig. 3 in �34��.

V. DISCRETE BREATHERS IN A 2D DUSTY PLASMA
CRYSTALS

Consider a Hamiltonian of form �4� with ��0 and

V�x� = x2/2 + ax3/3 + bx4/4. �25�

We shall consider three sets of typical values from real ex-
periments �40� for the nonlinearity parameters a, b and for
the coupling constant �, shown in Table I.

We have tested the numerical stability of the solutions
obtained above for the values of Table I. Our numerical
analysis is twofold. It first focuses on the dynamics of the
Floquet multipliers of the corresponding DB for the given
values of a, b and �, varying the latter in order to span a
range of different values and thus identifying existing �in�sta-
bility regimes, in terms of the strength of the intergrain elec-
trostatic coupling. Once the stable/unstable regions were
traced, a numerical simulation has been used to confirm our
predictions for the breather stability. The main points of the
analysis are presented below.

A. Single-site breathers

We will first examine a system with the first set of values
in Table I. The on-site potential of the lattice has the form of

x

V
ω

J
(b)(a)

FIG. 8. �a� The on-site potential of the lattice for set I of Table I and �b� the frequency � of the oscillation for the same potential with
respect to J.
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Fig. 8�a�, and the corresponding frequency range of an indi-
vidual oscillator ��J� is shown in Fig. 8�b�. In order to com-
pute a breather we have to consider one of the oscillators of
the lattice to oscillate with a frequency �b�m�p. Note that
in the specific case �p=1 due to normalization we have al-
ready performed. By taking a look in Fig. 8�b� we can very
easily choose a frequency �b that does not resonate with the
phonon frequency �p. Although the graph Fig. 8�b� is drawn
with respect to action J there is a one-on-one correspondence
with the amplitude of the oscillation which can be very eas-
ily computed even if we do not know the explicit form of the
action-angle canonical transformation �50�. For example, the
results presented in Fig. 9 are for xmax=3.3 that results to
�b�0.692.

We can see that for ���=0.001 we have a pair of multipli-
ers at unity while the rest lie in two very small conjugate
bundles. For increasing values of ��� these bundles �which
consist the phonon band� spread along the unit circle, and
finally for ����0.056 they reach +1. This means that the
frequency of the breather has reached the phonon band so the
breather can no longer exist. So, we can expect the existence
of single-site breathers in such a system since the value of �
in set I is ���=0.034. Note that in an infinite length lattice the
phonon band would be continuous. In Fig. 9 it appears dis-
crete because of the finite size of the system we use for
computations. By using similar arguments we find that for
sets II and III we can expect breather motions only up to

����0.049 and ����0.037, respectively. This is somehow an-
ticipated since higher values of � the continuous behavior of
the system.

B. Three-site breathers

We will consider again set I for our study. Due to Eq. �17�
and since ��

�J �0 �Fig. 8�b�� determines the linearly stable
solution, at least for small values of �, is the in-phase con-
figuration �Fig. 4�.

As it can be seen in Fig. 10, the in-phase breather remains
linearly stable until ����0.017 when a Hopf bifurcation oc-
curs and it destabilizes �Fig. 10�, which means that after
approximately 120 periods of oscillation the energy starts
flowing to the rest of the lattice.

Following the same kind of arguments we conclude that
for the sets II and III of Table I the corresponding in-phase
breathers remain stable until ����0.016����0.013, respec-
tively.

The out-of-phase �Fig. 5� and vortex �Fig. 6� configura-
tions have �due to Eqs. �18� and �20�� one and two pairs of
characteristic exponent which have real part to leading order
of approximation so they are linearly unstable for ��� arbi-
trary small. In Fig. 11, it can be seen that for ����0 the out
of phase breather possesses a pair of multipliers in the real
axis, while the vortex breather possesses a complex qua-
druple.

|ε| = 0.001 |ε| = 0.010 |ε| = 0.035 |ε| = 0.056

FIG. 9. �Color online� The distribution of the Floquet multipliers corresponding to the breather depicted in Fig. 2 for increasing values
of ���.

|ε| = 0.005 |ε| = 0.015 |ε| = 0.020 |ε| = 0.030

FIG. 10. �Color online� The distribution of Floquet multipliers for increasing ��� for the breather depicted in Fig. 4. The last two images
show the destabilization of the breather for ����0.017.
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VI. CONCLUSIONS

In this paper, we have established the occurrence in a
hexagonal dusty plasma lattice of localized vibrational
modes in the form single-site or three-site breathers. Since
transverse dust-lattice vibrations in a dusty plasma lattice are
characterized by an inverse dispersion �backward wave�, we
have identified a phenomenological Klein-Gordon-type

Hamiltonian with negative coupling � and a quartic polyno-
mial on-site potential to take into account this behavior. The
parameters of the potential are given from real experiments
and are divided into three sets originating from three differ-
ent experimental configurations. We have considered the first
set of values since this best satisfies the discreteness require-
ment having �=−0.034. For this configuration we conclude
that single-site breathers can be supported, but the three-site
ones are unstable for this value of the coupling. However,
real values of the coupling parameter � in experiments span
a large region of values so that three-site breathers are ex-
pected to be stable for a different parameter set.
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